Antibiotic resistance can also be introduced artificially into a microorganism through transformation protocols. This can be a useful way of implanting artificial genes into the microorganism.
Contents |
Causes
Antibiotic resistance is a consequence of evolution via natural selection or programmed evolution. The antibiotic action is an environmental pressure; those bacteria which have a mutation allowing them to survive will live on to reproduce. They will then pass this trait to their offspring, which will be a fully resistant generation.
Several studies have demonstrated that patterns of antibiotic usage greatly affect the number of resistant organisms which develop. Overuse of broad-spectrum antibiotics, such as second- and third-generation cephalosporins, greatly hastens the development of methicillin resistance, even in organisms that have never been exposed to the selective pressure of methicillin per se (thus the resistance was already present). Other factors contributing towards resistance include incorrect diagnosis, unnecessary prescriptions, improper use of antibiotics by patients, and the use of antibiotics as livestock food additives for growth promotion.
Mechanisms of antibiotic resistance
The four main mechanisms by which microorganisms exhibit resistance to antimicrobials are:
- Drug inactivation or modification: e.g. enzymatic deactivation of Penicillin G in some penicillin-resistant bacteria through the production of β-lactamases.
- Alteration of target site : e.g. alteration of PBP - the binding target site of penicillins - in MRSA and other penicillin-resistant bacteria.
- Alteration of metabolic pathway: e.g. some sulfonamide-resistant bacteria do not require para-aminobenzoic acid (PABA) - an important precursor for the synthesis of folic acid and nucleic acids in bacteria inhibited by sulfonamides. Instead, like mammalian cells, they turn to utilizing preformed folic acid.
- Reduced drug accumulation: by decreasing drug permeability and/or increasing active efflux on the cell surface.
Resistant pathogens
Staphylococcus aureus (colloquially known as "Staph aureus") is one of the major resistant pathogens. Found on the mucous membranes and the skin of around a third of the population, it is extremely adaptable to antibiotic pressure. It was the first bacterium in which penicillin resistance was found -- in 1947, just four years after the drug started being mass-produced. Methicillin was then the antibiotic of choice. MRSA (methicillin-resistant Staphylococcus aureus) was first detected in Britain in 1961 and is now "quite common" in hospitals. MRSA was responsible for 37% of fatal cases of blood poisoning in the UK in 1999, up from 4% in 1991. Half of all S. aureus infections in the US are resistant to penicillin, methicillin, tetracycline and erythromycin.
This left vancomycin as the only effective agent available at the time. However, VRSA (Vancomycin-resistant Staphylococcus aureus) was first identified in Japan in 1997, and has since been found in hospitals in England, France and the US. VRSA is also termed GISA (glycopeptide intermediate Staphylococcus aureus) or VISA (vancomycin insensitive Staphylococcus aureus), indicating resistance to all glycopeptide antibiotics.
A new class of antibiotics, oxazolidinones, became available in the 1990s, and the first commercially available oxazolidinone, linezolid, is comparable to vancomycin in effectiveness against MRSA. Linezolid-resistance in Staphylococcus aureus was reported in 2003.
Enterococcus faecium is another superbug found in hospitals. Penicillin-Resistant Enterococcus was seen in 1983, Vancomycin-Resistant Enterococcus (VRE) in 1987, and Linezolid-Resistant Enterococcus (LRE) in the late 1990s.
Penicillin-resistant pneumonia (or pneumococcus, caused by Streptococcus pneumoniae) was first detected in 1967, as was penicillin-resistant gonorrhea. Resistance to penicillin substitutes is also known as beyond S. aureus. By 1993 Escherichia coli was resistant to five fluoroquinolone variants. Mycobacterium tuberculosis is commonly resistant to isoniazid and rifampin and sometimes universally resistant to the common treatments. Other pathogens showing some resistance include Salmonella, Campylobacter, and Streptococci.
In November, 2004, the Centers for Disease Control and Prevention (CDC) reported an increasing number of Acinetobacter baumannii bloodstream infections in patients at military medical facilities in which service members injured in the Iraq/Kuwait region during Operation Iraqi Freedom and in Afghanistan during Operation Enduring Freedom were treated. Most of these showed multidrug resistance (MRAB), with a few isolates resistant to all drugs tested. [1]
Antibiotic resistance and the role of animals
MRSA is acknowledged to be a human commensal and pathogen. MRSA has been found in cats, dogs and horses, where it can cause the same problems as it does in humans. Owners can transfer the organism to their pets and vice-versa, and MRSA in animals is generally believed to be derived from humans.
This is not the case for other pathogens, however. There are concerns that some antibiotic resistant organisms may derive from the use of antibiotics in food animals. 15% of all antibiotics manufactured in Europe are used on animals. For precisely this reason, in many countries, antibiotics that are licensed for human use are banned from use in animals. However, related antibiotics are often used as growth promoters and to prevent or treat illnesses (particularly in poultry) and have been associated with the development of resistant strains in bacteria isolated from poultry and other food animals.
The US Food and Drug Administration banned enrofloxacin from use in poultry in July 2005 in response to concerns that use of enrofloxacin use in chickens might contribute to ciprofloxacin resistance in Campylobacter infecting humans. The US Food and Drug Administration felt that serious questions could be raised about whether use of enrofloxacin posed zero risk to humans. Although the risk to humans may be zero, this is not currently proved with scientific certainty. Campylobacter is an avian gut commensal, and Campylobacter gastroenteritis in humans is sometimes associated with the consumption of undercooked chicken, although handling of raw chicken and preparation and consumption of chicken in the home have also been associated with reduced risks of Campylobacter infections. Campylobacter resistance is up to 20% in parts of the developed world. Enrofloxacin is a fluoroquinolone whose mechanism of action is very similar to ciprofloxacin; it is used in veterinary practice to treat respiratory infections of poultry, when it is added to water or to the feed and may be used to medicate a whole flock. Scientists and lobbyists have often pointed out that there is no evidence of the transfer of antibiotic resistance in food animals to humans, but given that Campylobacter does not naturally occur in humans (unless they eat foods with campylobacter) and that ciprofloxacin resistance has increased among people who travel to countries with widespread abuse of ciprofloxacin, it has been tempting for advocates who oppose consumption of meat and/or use of animal antibiotics to conclude that ciprofloxacin-resistant Campylobacter in humans could arise from eating chicken contamined with enrofloxacin-resistant Campylobacter, despite the lack of scientific evidence. Indeed in countries where fluoroquinolone use is restricted, fluoroquinolone resistance in Campylobacter is uncommon.[1] Sadly, a preoccupation with fear of resistance has led many scientists and regulators to overlook the fact that appropriate use of antibiotics in animal feeds can reduce human exposures to susceptible bacteria. For example, in Australia, where enrofloxacin is not used, ciprofloxacin resistance rates in human isolates are relatively low (comparable to historical rates reported among domestically acquired cases of campylobacteriosis in the United States, but much smaller than rates in Spain, Thailand, and other countries where ciprofloxacin is over-used). However, rates of campylobacteriosis in the population are many time greater than in the United States. It remains to be seen whether the 2005 ban on enrofloxacin in the United States will be followed by increases in campylobacteriosis rates -- a possibility that FDA declined to consider in arguing for a ban.
The illegal use of amantadine to medicate poultry in the South of China and other parts of southeast Asia, means that although the H5N1 strain that appeared in Hong Kong in 1997 was amantadine sensitive, the more recent strains have all been amantadine resistant. This seriously reduces the treatment options available to doctors in the event of an influenza pandemic.
Eighteen UK organisations banded together in November 1997 to set guidelines on the use of antibiotics in farm animals, in order to address the concerns of the larger public. The consortium is called RUMA (Responsible use of Medicine in Agriculture Alliance) Members of this consortium include the British Poultry Council and various industry and pharmaceutical firms. The European Union has banned the use of all antibiotics as growth promoters since 1 January 2006.
Alternatives to antibiotics
Prevention
Washing hands properly reduces the chance of getting infected or spreading infection. Thoroughly washing or avoiding of raw foods such as fruits, vegetables, raw eggs, and undercooked meat can also reduce the chance of an infection.
Vaccines
Vaccines do not suffer the problem of resistance because a vaccine enhances the body's natural defenses, while an antibiotic operates separately from the body's normal defenses. Nevertheless, new strains may evolve that escape immunity induced by vaccines.
While theoretically promising, anti-staphylococcal vaccines have shown limited efficacy, because of immunological variation between Staphylococcus species, and the limited duration of effectiveness of the antibodies produced. Development and testing of more effective vaccines is under way.
Phage therapy
Phage therapy is a more recent alternative that can cope with the problem of resistance.
Development of newer antibiotics
The resistance problem demands that a renewed effort be made to seek antibacterial agents effective against pathogenic bacteria resistant to current antibiotics. One of the possible strategies towards this objective is the rational localization of bioactive phytochemicals. Plants have an almost limitless ability to synthesize aromatic substances, most of which are phenols or their oxygen-substituted derivatives such as tannins. Most are secondary metabolites, of which at least 12,000 have been isolated, a number estimated to be less than 10% of the total. In many cases, these substances serve as plant defense mechanisms against predation by microorganisms, insects, and herbivores. Many of the herbs and spices used by humans to season food yield useful medicinal compounds including those having antibacterial activity.
Traditional healers have long used plants to prevent or cure infectious conditions. Many of these plants have been investigated scientifically for antimicrobial activity and a large number of plant products have been shown to inhibit growth of pathogenic bacteria. A number of these agents appear to have structures and modes of action that are distinct from those of the antibiotics in current use, suggesting that cross-resistance with agents already in use may be minimal.
Applications
Antibiotic resistance is an important tool for genetic engineering. By constructing a plasmid which contains an antibiotic resistance gene as well as the gene being engineered or expressed, a researcher can ensure that when bacteria replicate, only the copies which carry along the plasmid survive. This ensures that the gene being manipulated passes along when the bacteria replicates.
The most commonly used antibiotics in genetic engineering are generally "older" antibiotics which have largely fallen out of use in clinical practice. These include:
- ampicillin
- kanamycin
- tetracycline
- chloramphenicol
Industrially the use of antibiotic resistance is disfavored since maintaining bacterial cultures would require feeding them large quantities of antibiotics. Instead, the use of auxotrophic bacterial strains (and function-replacement plasmids) is preferred.
External links
- Vancomycin Resistant Enterococcus - Guidelines for Healthcare Workers
- Alliance for the Prudent Use of Antibiotics
- Quantifying potential human health impacts of animal antibiotic use: Enrofloxacin and macrolides in chickens.
- http://www.fda.gov/fdac/features/795_antibio.html
- http://www.antibioticresistance.org.uk/
References
- Lord Soulsby of Swaffham Prior (2005). "Resistance to antimicrobials in humans and animals". Brit J Med 331: 1219–20.
- ^ Brierley R (2006). "Fluoroquinolone use should be curbed in animals". Lancet Infect Dis 6 (6): 329.