Contents |
Note name
A note with doubled frequency as another sounds very similar, and is commonly given the same name, called pitch class. The span of notes within this doubling is called an octave. The complete name of a note consists of its pitch class and the octave it lies in. The pitch class uses the first seven letters of the latin alphabet: A, B, C, D, E, F, and G (in order of rising pitch). The letter names repeat, so that the note above G is A (an octave higher than the first A) and the sequence continues indefinitely. Notes are used together as a musical scale or tone row.
Because there are actually 12 notes needed by diatonic music, the 7 letter names can also be given a modifier. The two main modifiers are sharps and flats which respectively raise or lower the pitch of a note by a semitone. These are used to create the additional five notes necessary to complete the chromatic scale. The sharp symbol is ♯ (similar to the pound symbol, #), the flat symbol is ♭ (similar to a lower-case italic b). These accidentals are written after the note name; for example F♯ represents the note F sharp, B♭ is B flat.
In music notation the symbols are placed before the note symbol or at the beginning of the line as a key signature. The natural symbol (♮), can be inserted before a note to cancel a flat or sharp in the signature.
Sharps can also be applied to notes B and E creating notes that are equal to C and F respectively (in modern western musical practice). Similarly flats applied to C and F are other names for B and E. Pushing this further, double-sharps and double-flats are used to indicate raised sharps and lowered flats. For example B♭♭ is another name for A.
Another style of notation, rarely used in English, uses the suffix "is" to indicate a sharp and "es" (only "s" after A and E) for a flat, e.g. Fis for F♯, Bes for B♭, Es for E♭. In parts of Europe, the letter H is sometimes used instead of B, in which case B represents B♭.
Name | prime | second | third | fourth | fifth | sixth | seventh | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Natural | C | D | E | F | G | A | B | |||||
Sharp (symbol) | C♯ | D♯ | F♯ | G♯ | A♯ | |||||||
Flat (symbol) | D♭ | E♭ | G♭ | A♭ | B♭ | |||||||
Sharp (text) | Cis | Dis | Fis | Gis | Ais | |||||||
Flat (text) | Des | Es | Ges | As | Bes | |||||||
French/Italian (only in C major) | Do | Re | Mi | Fa | Sol | La | Si | |||||
Variants | Ut | - | - | - | So | - | Ti | |||||
German | C | D | E | F | G | A | B | H | ||||
Frequency [Hz] | 262 | 277 | 294 | 311 | 330 | 349 | 370 | 392 | 415 | 440 | 466 | 494 |
The octaves of doubled frequency are indicated in various ways as shown in the table below. Octaves count from C to B. The traditional system starts from the great octave (with capital letters) and small octave (with minuscule letters). Lower octaves are named "contra" (with primes before), higher ones "lined" (with primes after). Another system suffixes a number (starting with 0). In this system A4 is nowadays standardised to 440 Hz, lying in the octave containing notes from C4 (middle C) to B4. The lowest note on most pianos is A0, the highest C8. The MIDI system for electronic musical instruments and computers uses a straight count starting with 0 for C0 up to 127 for G10.
Octave naming systems | frequency of A [Hz] |
|||
---|---|---|---|---|
traditional | shorthand | numbered | MIDI nr | |
subsubcontra | '''C - '''B | C0-B0 | 0-11 | 13.75 |
subcontra | ''C - ''B | C1-B1 | 12-23 | 27.5 |
contra | 'C - 'B | C2-B2 | 24-35 | 55 |
great | C - B | C3-B3 | 36-47 | 110 |
small | c - b | C4-B4 | 48-59 | 220 |
one-lined | c' - b' | C5-B5 | 60-71 | 440 |
two-lined | c'' - b'' | C6-B6 | 72-83 | 880 |
three-lined | c''' - b''' | C7-B7 | 84-95 | 1760 |
four-lined | c'''' - b'''' | C8-B8 | 96-107 | 3520 |
five-lined | c''''' - b''''' | C9-B9 | 108-119 | 7040 |
six-lined | c'''''' - b'''''' | C10-B10 | 120-127 | 14080 |
Written notes
A written note can also have a note value, a code which determines the note's relative duration. These note values include quarter notes (crotchets), eighth notes (quavers), and so on.
When notes are written out in a score, each note is assigned a specific vertical position on a staff position (a line or a space) on the staff, as determined by the clef. Each line or space is assigned a note name, these names are memorized by the musician and allows him or her to know at a glance the proper pitch to play on his or her instrument for each note-head marked on the page.
The staff above shows the notes C, D, E, F, G, A, B, C and then in reverse order, with no key signature or accidentals.
Note frequency (hertz)
In all technicality, music can be composed of notes at any arbitrary frequency. Since the physical causes of music are vibrations of mechanical systems, they are often measured in hertz (Hz), with 1 Hz = 1 complete vibration per second. For historical and other reasons especially in Western music, only twelve notes of fixed frequencies are used. These fixed frequencies are mathematically related to each other, and are defined around the central note, A4. The current "standard pitch" or "concert pitch" for this note is 440 Hz. Actual practice may vary. In the past there has been a rising tendency.
The note naming convention specifies a letter, any sharp/flat, and an octave number. Any note is exactly an integer number of half-steps away from central A (A4). Let this distance be denoted n. Then,
For example, let's find the frequency of the C above Middle A (C5). There are +3 half-steps between A4 and C5
- A — (1) → A♯— (2) → B — (3) → C
- (approximately)
It is important to keep the sign of n in mind. For example, the F below Middle A is F♯4. There are -4 half-steps:
- A — (1) → Ab — (2) → G — (3) → Gb — (4) → F
... each of these is descending the scale. Thus:
- (approximately)
Finally, it can be seen from this formula that octaves automatically yield factors of two times the original frequency (in fact this is the means to derive the formula, combined with the notion of equally-spaced intervals).
History of note names
Music notation systems have used letters of the alphabet for centuries. The 6th century philosopher Boethius is known to have used the first fifteen letters of the alphabet to signify the notes of the two-octave range that was in use at the time. Though it is not known whether this was his devising or common usage at the time, this is nonetheless called Boethian notation.
Following this, the system of repeating letters A-G in each octave was introduced, these being written as minuscules for the second octave and double minuscules for the third. When the compass of used notes was extended down by one note, to a G, it was given the Greek G (Γ), gamma. (It is from this that the French word for scale, gamme is derived, and the English word gamut.)
The remaining five notes of the chromatic scale (the black keys on a piano keyboard) were added gradually; the first being B which was flattened in certain modes to avoid the dissonant augmented fourth interval. This change was not always shown in notation, but when written, B♭ (B flat) was written as a Latin, round "b", and B♮ (B natural) a Gothic b. These evolved into the modern flat and natural symbols respectively. The sharp symbol arose from a barred b, called the "cancelled b".
In parts of Europe, including Germany, the natural symbol transformed into the letter H: in German music notation, H is B♮ (B natural) and B is B♭ (B flat).
In Italian notation the notes of scales are given in terms of Do - Re - Mi - Fa - Sol - La - Si rather than C - D - E - F - G - A - B. These names follow the original names given by Guido d'Arezzo, who had taken them from the first syllables of the first seven verses of a Gregorian Chant called Ut queant laxis, which began on the appropriate scale degrees. These became the basis of the solfege system. "Do" later replaced the original "ut", for ease of singing, though "ut" is still used in some places. "Si" or "ti" was added as the seventh degree (which is not from a word in the chant).
Source
- Nattiez, Jean-Jacques (1990). Music and Discourse: Toward a Semiology of Music (Musicologie générale et sémiologue, 1987). Translated by Carolyn Abbate (1990). ISBN 0691027145.
External links
Categories: Musical notation